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Abstract—Diabetic Retinopathy, a common diabetes 

complication causes damages to the blood vessels of light 

sensitive tissues in the human retina. Due to the limitations in 

the manual screening process, there exists a compelling 

requirement of an automated approach for the Diabetic 

Retinopathy screening which can be applied regularly and in 

abundance in any kind of a healthcare environment. This paper 

suggests a Deep Learning based automated approach to classify 

retinal fundus images into five major severity levels while 

focusing on achieving the optimal accuracy-efficiency balance in 

performance. In the classification task, a lightweight 

Convolutional Neural Network (CNN) model with only 6 

convolutional layers was suggested to classify retinal fundus 

images to five major severity levels. CNN refinements such as 

Hyperparameter Tuning, Regularization and Data 

Augmentation were applied to increase the model accuracy. The 

suggested model achieved an Accuracy of 72.28%, a Sensitivity 

of 71.12% and a Specificity of 93.1% for a testing dataset of 267 

retinal fundus images from Kaggle and Messidor-2 datasets. By 

comparing with four pre-trained CNN models VGG16, 

ResNet50, InceptionV3 and Xception, it was observed that the 

accuracy of the suggested model is slightly lesser than that of 

VGG16 and ResNet50 models. However, the number of FLOPs 

in the suggested model is 23 times lesser than VGG16 and 6 

times lesser than ResNet50, indicating that the suggested model 

is more efficient than the mentioned pre-trained models. The 

accuracy of the suggested model can be further improved 

without increasing the number of FLOPs by increasing the 

number of training data samples. 
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I. INTRODUCTION  

Diabetic Retinopathy (DR), is a common diabetes 
complication which causes damages to the blood vessels of 
the light sensitive tissues in the human retina [1]. Although it 
would show no symptoms or only mild vision  problems in the 
beginning, if not identified and treated properly, a patient 
could end up in permanent blindness. According to the 
statistics provided by the International Diabetes Federation, in 
2019 approximately 463 million adults (20-79 years) were 
living with diabetes. They have estimated that by 2045, the 
number of diabetes patients will rise to 700 million [2]. All 
these individuals are at risk of developing DR conditions [3].  
Over the years, DR has become one of the leading causes of 
blindness in the working age population, making huge impacts 
not only in the health sector but in the economy as well.  

The main classification of DR is into two groups as Non-
Proliferative Diabetic Retinopathy (NPDR) and Proliferative 

Diabetic Retinopathy (PDR). NPDR is the earlier stage where 
the walls of blood vessels in the eyes becomes weak and small 
dots of blood called Microaneurysms protrude from the vessel 
walls. PDR is the advanced stage where the damaged blood 
vessels close off while growing new fragile ones. This results 
in many complications and sometimes ends up with complete 
vision loss. Fig. 1 shows the differences between NPDR, PDR 
and  normal retinal images respectively. 

NPDR can be further categorized into three stages as Mild 
NPDR, Moderate NPDR and Severe NPDR. According to the 
International Clinical Diabetic Retinopathy Severity Scale 
proposed by C. P. Wilkinson et al. (2003) there are five major 
severity levels of DR as, No DR (Healthy), Mild NPDR, 
Moderate NPDR, Severe NPDR, and PDR [4]. These severity 
levels are identified with the presence of three major lesion 
types, Microaneurysms, Hemorrhages and Exudates [5].  

Throughout the world, the screening of Diabetic 
Retinopathy is mostly done manually by the trained 
ophthalmologists. Although 70% of diabetes cases occur in 
low and lower-middle income countries, still the clinical 
practice guidelines for DR management and screenings are not 
well established [6]. Manual Screening of DR needs the 
involvement of experts as well as expensive instruments 
which are hard to be achieved in lower-income healthcare 
environments. Also, there is a shortage of eye care  specialists 
needed to screen the large amount of diabetes patients 
regularly [7]. Moreover, manual DR screening is a time-
consuming task which is widely affected by the 
inconsistencies in manual readings [8]. Due to  these 
limitations, the early detection, regular screenings and 
treatments required to prevent the further complications of the 
disease are harder to be achieved. Therefore, it is crucial to 
have an automated approach for the DR screening which can 
be applied regularly and in abundance in any kind of a health 
care environment. 

Identifying the correct DR severity level is a main 
objective of DR screening. This is essential to identify DR 
patients in early stages in order to prevent the possible 
irreversible blindness [9]. The motivation behind this work is 
to facilitate this objective by automating the tasks of 
classifying DR, while optimizing the accuracy and the 
efficiency via Deep Learning approaches. 

The remainder of this paper is as follows. Section II 
presents a literature review on the classification of Diabetic 
Retinopathy. Section III includes a detailed description of the 
design and methodology of the suggested approach for the 
classification of DR. Section IV discusses the evaluation of 



the suggested approach. Section V presents the conclusion of 
the study.  

Fig. 1. Differences between NPDR, PDR and normal retina [10] 

 

II. RELATED WORK 

With the advancement of the computing sector, many 
approaches have been used to automate the tasks of classifying 
Diabetic Retinopathy. In recent years, Deep Learning 
approaches have been widely used for this task [9]. The 
advantage of using Deep Learning based approaches over 
other Computer Vision approaches is that it does not need 
hand-crafted feature extraction [11]. Recently, Convolutional 
Neural Networks (CNN) has become the most widely used 
Deep Learning based approach in medical image analysis 
[12].  

CNN is a class of Deep Neural Networks, consisting of 
input layers, output layers as well as multiple hidden layers of 
convolution, subsampling and fully connected layers. The 
convolutional layers are composed with a set of learnable 
parameters called filters. When training a CNN, each filter is 
convolved across the input image performing a dot product 
with filter entries and image entries. Filters are associated with 
features and when a certain feature is presented in the input, 
the convolution between the filter and the input provides 
higher values. With these values, the network gains the ability 
to detect the features associated with filters [13].  

 

A. Deep Learning based Diabetic Retinopathy Screening 

Approaches 

M. T. Esfahani et al. (2018) have used 35,000 retinal 
images of Kaggle dataset to be fine-tuned using a pre-trained 
ResNet34 CNN architecture to classify retinal fundus images 
to two classes as No DR and DR [14]. They have pre-
processed the input images by blurring the background using 
Gaussian blur, normalized the images to eliminate image 
defects and resized into 512 × 512 pixels before feeding 
images into the pre-trained CNN. From 2000 test images, they 
have achieved 85% and 86% as their overall precision and 
recall values respectively. The limitation of this study is that 
the authors have not considered the five major severity level 
classification, which is most commonly used in the  medical 
domain. 

X. Wang et al. (2018) have evaluated three pre-trained 
CNN models in classifying retinal images to the five major 
DR severity levels [15]. A dataset of 166 Kaggle images was 
resized as a pre-processing step and fed into pre-trained 
VGG16, AlexNet and InceptionNetV3 models separately. The 

average accuracy received after training was 50.03%, 37.43%  
and 63.23% respectively. Using a limited number of images 
for training and applying limited pre-processing techniques 
have reduced the capability of the CNN to learn more robust 
features from input retinal images.  

J. J. Orlando et al. (2018) have used a light CNN, 
augmented with domain knowledge to automate the detection 
of Microaneurysms and Hemorrhages which are collectively 
known as red lesions [17]. The features extracted from the 
CNN were fed into a Random Forest Classifier to remove false 
lesion candidates. The maximum lesion probability assigned 
by the Random Forest Classifier was used as a feature for DR 
screening. E-Ophtha, DIARETDB1 and Messidor datasets 
have been used for the evaluation where the maximum 
sensitivity of 48.83% was achieved with DIARETDB1 
dataset. Detection of Exudates and the stage-based 
classification were not covered in this study. 

 

B. Efficiency Perspective related to Deep Learning based 

Classifications. 

Since the remarkable results of AlexNet in 2012 [18], 
Deep Learning based solutions have contributed to significant 
improvement in accuracy for many Computer Vision 
applications. Besides accuracy, efficiency is an equally 
important factor which is essential in real-time tasks such as 
DR classification. Majority of the most accurate Deep 
Learning based solutions in DR screening have a larger 
number of  layers and thousands of parameters which requires 
millions of floating-point operations (FLOPs) in computations 
[19]. This makes these models extremely complex and 
inefficient. Efficiency perspective has become a recent trend 
in the Computer Vision domain, since present-day 
applications are expected to have an optimal efficiency 
accuracy balance which aids these applications to operate 
easily under limited computational budget and even on 
embedded devices [20].  

The concept of lightweight CNN architecture has become 
more popular recently as a method of enhancing the efficiency 
perspective related to Deep Learning based studies [21, 22]. 
Rather than applying Transfer Learning or Fine-Tuning 
techniques on pre- trained models or custom models with a 
large number of layers, here the main objective is to achieve 
the best efficiency-accuracy balance by applying refinements 
and special pre-processing techniques on CNN models with a 
lesser number of layers and  parameters. Data Augmentation, 
Hyper-parameter Tuning, Dropouts layers, Batch 
Normalization layers and L1, L2 Regularizations can be 
named as some of the widely being applied refinements in 
these kinds of CNNs.  

 K. Xu et al. (2017) have used a custom CNN model 

with 8 convolutional layers trained with 800 retinal images 

from Kaggle dataset, for a binary classification [23]. Images 

resized to 224×224×3 pixels were fed as input to the CNN 

and Data Augmentation techniques were applied on input 

images with rotation, flipping, shearing, scaling and 

translation as the types of transformations. For a testing 

dataset with 200 images, they achieved an overall accuracy 

of 94.5% and 91.5% with Data Augmentation and without 

Data Augmentation respectively. The limitation of this study 



is that it has classified the retinal images only into two 

classes. 

 S. Gayathri et al. (2020) have trained a custom CNN 

with 6 convolutional layers with a smaller number of 

parameters to make the model suitable for real-time 

processing [24]. After feature extraction, the output feature 

map of CNN has been fed to different machine learning 

classifiers and evaluated the performance. SVM, AdaBoost, 

Naive Bayes, J48 and Random Forest were the machine 

learning classifiers used for comparison. Out of these, J48 

provided the best accuracy when evaluated with 

MESSIDOR, Kaggle and IDRiD datasets. For binary 

classification, J48 classifier accuracy was 99.89% and for 

multi class classification, accuracy was 99.59%. The 

limitation of this study is that rather than using a single CNN 

for feature extraction and classification both, they have used 

different machine learning classifiers after extracting features 

through a lightweight-CNN which results in a higher 

computational cost.  
 W. L. Alyoubi et al. (2020) have analysed the most 

recent automated systems of DR classification and detection 
that used Deep Learning techniques [9]. They have identified 
that 73% of the studies they have covered, classified the input 
images only into two classes as DR and No-DR (Healthy). 
Even in the studies which classified retinal images into all five 
severity levels, there were accuracy and efficiency limitations. 
Also, majority of the existing studies have covered only the 
accuracy perspective of the research by focusing on achieving 
the optimal accuracy through suggested models. Therefore, 
there exists a research gap that is needed to be covered, in 
order to identify systems that have the ability to recognize the 
five major DR severity levels with a high accuracy and 
efficiency.  

 

III. DESIGN & METHODOLOGY 

Existing studies on this domain have used both pre-trained 
CNN models and custom CNN models for the severity level 
classification of Diabetic Retinopathy [15, 16, 23, 24]. 
Majority of the existing pre-trained models have a larger 
number of convolutional layers and parameters which results 
in a higher computational cost in the feature extraction process 
[19]. Once the number of convolutional layers increases, the 
number of floating-point operations (FLOPs) performed when 
predicting model outputs increases by making the models 
inefficient and complex. Since the objective of this  study is to 
achieve the optimal efficiency-accuracy balance, a custom 
lightweight custom CNN model was suggested for the feature 
extraction as well as for the severity level classification.  

As the initial step of the Classification Phase, 1000 retinal 
fundus images from the publicly available Kaggle dataset [25] 
were subjected to basic pre-processing steps such as resizing 
to 224×224, cropping the background and the normalization. 
Since the data sample distribution among the five DR severity 
levels of the Kaggle dataset was not uniform, Data 
Augmentation techniques [26] were applied to increase the 
number of training images belonging to the classes with a 
lesser number of data samples. The transformation techniques 
used for Data Augmentation were, rotation, horizontal and 
vertical flips, zooming, shearing and the changing of 
brightness. Fig. 2 displays a sample retinal fundus image 
before and after the Data Augmentation. 

Fig. 2. A sample retinal image before and after Data Augmentation 

After pre-processing the input images, the first step was to 
identify the optimal number of convolutional layers for the 
proposed custom CNN model. The pre-processed images 
were trained by changing the number of convolutional layers 
in the model within the range of 4 to 9. By evaluating the 
accuracy and the loss of the model for each instance, the 
optimal number of convolutional layers was identified as six. 

Several stages of CNN refinements were applied on the 
suggested custom CNN model with six convolutional layers 
as displayed in Fig. 3. As the first refinement, Hyperparameter 
Tuning approach was applied on the suggested custom CNN 
model to observe the changes of the model accuracy with 
different parameter combinations [27]. TABLE I displays the 
experimental values for hyperparameters. Best accuracy for 
the custom CNN model was obtained when the number of 
units of the second dense layer was 256, dropout rate was 0.1 
and the optimizer was the Stochastic Gradient Descent (SGD) 
algorithm. 

After identifying the optimal hyperparameters, 
Regularization techniques were applied on the model as the 
second refinement. Regularization is a machine learning 
technique that is used to reduce the overfitting problems of the 
suggested models [28].  

Fig. 3. Stages of applying CNN refinements 

 



TABLE I.  EXPERIMENTAL VALUES FOR HYPERPARAMETERS 

Hyperparameter Experimented Values 

Number of units in the second dense 

layer 

1024, 512, 256, 128, 64, 32  

Dropout rate in the dropout layer Range between 0.1 and 0.25 

Optimizer Adam, SGD 

 

After applying L1 Regularization, L2 Regularization and 
the Dropout  Regularization techniques, the Dropout method 
was selected as the best suited regularization technique for the 
suggested CNN model by comparing the model performance 
at each instance. In the Dropout method, a randomly selected 
portion of the neurons of a particular layer was ignored in each 
training, to avoid the model being overly dependent on just a 
few weights [29].  

As the final refinement, Data Augmentation was applied 
on the initial dataset to increase the number of training and 
validation images. Another objective of applying this 
technique was to generate different transformations of images 
which can be seen in real-world scenarios, such as the 
brightness changes, shearing, flipping and slight rotations. 
After applying Data Augmentation, the size of the training 
dataset was increased to 2500 images from the original size of 
1000 images, and the size of the validation dataset was 
increased to 500 images from the original size of 200 images. 
The finalized custom CNN model was trained for 1000 epochs 
with a learning rate of 0.001 and a batch size of 50 on Google 
Colaboratory with 2 CPU cores, 2.30GHz CPU Frequency 
and a 12 GB RAM. Fig. 4 displays the architecture of the 
finalized custom CNN model. 

 

Fig. 4. Architecture of the suggested custom CNN model 

 

In order to compare the performance of the suggested 
lightweight custom CNN architecture, four pre-trained CNN 
models VGG16 [30], InceptionV3 [31], Xception [32], and 
ResNet50 [33] which have achieved the best accuracy in 2014 
ImageNet Large-Scale Visual Recognition Challenge 
(ILSVRC) [34] were trained on the same training dataset 
using both Transfer Learning and Fine-Tuning techniques. In 
Transfer Learning, convolutional layers of these models were 
only used for the feature extraction and their weights were not 
updated through the training process. In Fine Tuning, models 
were trained from the scratch to learn more robust features 
specific to the dataset. Each model was trained with the 
original dataset with 1000 training images and 200 validation 
images for 100 epochs without applying any of the CNN 
refinements used for the lightweight custom CNN model.  

 

IV. RESULTS & EVALUATION 

A. Evaluation of the suggested lightweight custom CNN 

model 

 The suggested lightweight custom CNN model with 

six convolutional layers was evaluated by using a testing 

dataset of 267 retinal fundus images obtained from both 

Kaggle and Messidor-2 datasets [35]. The retinal fundus 

images used for the training process were not used for the 

testing purposes. Testing dataset was equally distributed 

between the 5 severity levels of DR, containing at least 50 

images from a single class. Among these 267 images, 

augmented images with slight rotations, brightness changes 

and translations were also included. The finalized lightweight 

custom CNN model obtained an accuracy of 72.28%, an 

average sensitivity of 71.12%, and an average specificity of 

91.3% in the classification task. The performance of the 

model evaluated at each stage of experimented CNN 

refinements is displayed in TABLE II. The Confusion Matrix 

of the finalized custom CNN model after identifying the 

optimal refinement techniques is displayed in Fig. 5. The 

number of correctly predicted retinal images under each class 

is displayed along the diagonal of the confusion matrix. 

TABLE III presents the statistical measures of performance 

of the finalized custom CNN model obtained from the testing 

dataset of 267 retinal fundus images. 

 

B. Performance Comparison of the custom CNN with pre-

trained CNN models. 

 TABLE IV displays the accuracy obtained from 

each of the four pre-trained models with transfer learning and 

fine tuning respectively, for a testing dataset with 267 retinal 

fundus images. According to the obtained results, fine-tuned 

ResNet50 and VGG16 models have surpassed the accuracy 

obtained from the custom CNN model for DR severity level 

classification. However, compared to these pre-trained 

models the suggested custom CNN model consists of a 

lightweight architecture with only 6 convolutional layers. A 

key objective of this study was to achieve the best 

classification accuracy through a lightweight custom CNN 

model, which has a higher efficiency and a lower complexity.  

 

 

 

 



TABLE II.  EVALUATION RESULTS AT EACH STAGE OF APPLYING 

RETINEMENTS TO THE CUSTOM CNN MODEL 

Refinement 

Stage 
Accuracy Precision Recall F1 Score 

Stage 1 0.568 0.496 0.562 0.527 

Stage 2 0.636 0.652 0.638 0.645 

Stage 3 0.679 0.634 0.674 0.653 

Stage 4 0.722 0.718 0.717 0.708 

 

 

Fig. 5. Confusion Matrix of the finalized custom CNN model 

TABLE III.  STATISTICAL MEASURES OF PERFORMANCE FOR THE 

FINALIZED CUSTOM CNN MODEL 

 Sensitivity Specificity F1 Score 

No DR 0.816 0.927 0.762 

Mild NPDR 0.500 0.954 0.588 

Moderate NPDR 0.555 0.934 0.612 

Severe NPDR 0.840 0.99 0.737 

PDR 0.875 0.941 0.849 

Average 0.717 0.931 0.708 

Model Accuracy 72.28 % 

TABLE IV.  ACCURACY OF PRE-TRAINED MODELS WITH TRANSFER 

LEARNING AND FINE TUNING 

Pre-trained 

 Model 

Accuracy in 

Transfer Learning 

Accuracy in Fine 

Tuning 

VGG16 75.78 % 80.34 % 

ResNet50 77.34 % 78.12 % 

InceptionV3 43.75 % 49.22 % 

Xception 36.72 % 43.97 % 

 
The number of floating-point operations (FLOPs) is a 

widely used indirect metric used in the domain of Deep 
Learning in measuring the complexity and the efficiency of 
targeted models. Decreasing the number of FLOPs results in  
monotonically decreasing inference times in models [36]. 
Since it was hard to find a direct metric to evaluate the 
efficiency of the pre-trained models and the suggested custom 

CNN model, the number of FLOPs for the models were 
calculated as an indirect metric, using the formula suggested 
by P. Molchanov et al. (2016) [36]. TABLE V displays the 
accuracy and FLOPs comparison for the suggested custom 
CNN model and the pre-trained models with fine-tuning. 

TABLE V.  ACCURACY AND THE FLOP COMPARISON FOR THE CUSTOM 

MODEL AND THE PRE-TRAINED MODELS 

 

Model 

Number of 

Convolutional 

Layers 

Accuracy 
Number of 

FLOPs 

Custom CNN 

model with 
refinements 

6 72.28 % 6.42 x 108 

VGG16 with fine 

tuning 
13 80.34 % 15.3 x 109 

ResNet50 with 

fine tuning  
48 78.12 % 3.8 x 109 

InceptionV3 with 

fine tuning 
48 49.12 % 5.72 x 109 

Xception with fine 

tuning 
36 43.97 % 74.69 x 109 

 

From the above results, it can be observed that although 
the fine-tuned VGG16 and ResNet50 models have slightly 
higher accuracies in classifying DR into five severity levels, 
the number of FLOPs in the custom CNN model is 
approximately 23 times lesser than VGG16 and 6 times lesser 
than the ResNet50 model.  

 

V. CONCLUSION 

The objective of this study was to automate the 
classification task of Diabetic Retinopathy while obtaining an 
optimal accuracy-efficiency balance in performance. In order 
to address this research problem, a fully automated deep 
learning based approach was suggested. In order to achieve 
the optimal accuracy-efficiency balance in the classification 
task, a lightweight custom CNN model with only 6 
convolutional layers was suggested. There are very few works 
existing in the literature which focuses on using a lightweight 
custom CNN model in classifying DR. To the best of our 
knowledge this work is the first to use only six convolutional 
layers and increase the accuracy of the model by applying 
CNN refinements, to classify retinal fundus images into all 5 
major severity levels of DR. The suggested model was trained 
by using 2500 augmented images generated from 1000 retinal 
images from the Kaggle dataset. The classification accuracy 
of 72.28% can be further improved without increasing the 
number of FLOPs, by training the model with a larger dataset 
of retinal images. After enhancing the accuracy, this 
lightweight model can be easily applied even in environments 
with low computational facilities such as rural hospitals. Since 
Data Augmentation techniques were applied on the training 
dataset, the suggested model has the ability to predict 
successful outcomes even when there are slight rotations, 
illumination variations and translations in input retinal 
images. The lesser number of FLOPs and parameters in the 
model makes it easy to be used under limited computational 
budget and even on embedded devices. 

The performance of the suggested lightweight 
classification model can be further improved by increasing the 
number of training images and by experimenting with 
different pre-processing and refinement techniques. A 



complete DR screening system which has the ability to 
identify the severity level of an input image after detecting the 
types of lesions can be implemented by integrating the 
suggested classification model with a successful lesion 
detection model. In order to build such a system, the 
performance of the classification model has to be maximized. 
The three major lesion types associated with Diabetic 
Retinopathy are indicators for some other retinal diseases such 
as Diabetic Macular Edema. Feature extraction capability of 
the suggested lightweight CNN model can be extended for the 
classification and the diagnosis of such diseases. 
Incorporating the knowledge from the domain specialists in 
increasing the model performance is also a possible 
enhancement that can be applied on this study. 
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