
2023 International Research Conference of Sri Lanka Technology Campus

Colombo, Sri Lanka. 14th-15th December 2023

Computer Vision and Deep Learning

Model Parallelism for Efficient GPU Computing in

Deep Learning Applications: Comprehensive

Review
H.M.S.S. Herath

Computational Intelligence and Robotics Research Lab

Sri Lanka Technological Campus

Padukka, Sri Lanka

sewmih@sltc.ac.lk

https://orcid.org/0009-0008-9702-5576

 H.M.K.K.M.B. Herath

Computational Intelligence and Robotics Research Lab

Sri Lanka Technological Campus

Padukka, Sri Lanka

kasunkh@sltc.ac.lk

https://orcid.org/0000-0002-1873-768X

Abstract—This comprehensive analysis explores the

transformative impact of parallel computing techniques in

deep learning. It examines the collaborative endeavors of

computer scientists and domain-specific researchers,

encompassing a broad spectrum of strategies ranging from

conventional data parallelism to cutting-edge methodologies

like pipeline and inter-operator parallelism. By democratizing

access to high-performance computing resources, these

innovations are redefining the landscape of artificial

intelligence (AI). The study highlights the considerable

enhancements in training efficiency and model accuracy while

addressing challenges such as integration complexities and

ethical considerations. Additionally, the research investigates

the environmental implications of large-scale parallel

computing, underscoring the need for sustainable, long-term

solutions to minimize its impact. It emphasizes the practical

importance of these advancements, particularly in critical

sectors such as healthcare and education, where AI-driven

innovations hold the potential to revolutionize existing

practices. Emphasizing a holistic approach, the analysis

advocates incorporating ethical, environmental, and societal

considerations in developing AI technologies. Envisioning a

future where artificial intelligence is robust but also inclusive

and sustainable, this analysis serves as a roadmap for fostering

a more accessible, ethical, and environmentally conscious era

of artificial intelligence. As the research community continues

to push boundaries, this study guides the realization of

responsible and impactful AI implementation.

Keywords—Artificial intelligence (AI), data parallelism,

inter-operator parallelism, parallel computing

I. INTRODUCTION

Deep learning methods face several challenges,

including computational intensity, high memory

requirements, and data parallelism bottlenecks, all of which

impede the efficient training of large-scale models.

Furthermore, issues such as communication overhead and

scalability constraints limit the capabilities of existing deep-

learning approaches. By introducing strategies such as

parameter shading and task parallelism, model parallelism

emerges as a solution to these challenges. The distribution

of a model's parameters across different devices optimizes

memory utilization and allows for the training of more

complex models. In contrast, task parallelism divides

computational tasks among devices, reducing the

computational intensity of deep learning training. Hybrid

approaches combining various parallelization techniques,

dynamic computational graphs, and optimized

communication all contribute to the effectiveness of model

parallelism.

Examining the landscape of different parallel computing

models exposes a complex tapestry of strategies and

techniques that have transformed the computer industry.

Executing several tasks or processes simultaneously is a

fundamental idea known as task parallelism. It is frequently

used in web servers to handle many concurrent user requests

and in scientific simulations to decompose complicated

issues into manageable pieces. Contrarily, data parallelism

focuses on managing numerous data sets or components

concurrently. It is essential in industries like image

processing, where processes are evenly performed to

individual pixels or frames for increased efficiency [1].

To improve the performance of current CPUs and GPUs,

bit-level parallelism takes us deep within computer design

fundamentals. Another architectural marvel, instruction-

level parallelism, optimizes the execution of machine

instructions, enabling contemporary microprocessors to

carry out several instructions simultaneously and speeding

up program execution [2, 3]. Task farming is widely used in

rendering farms for computer-generated imagery (CGI) and

distributed computing projects like SETI@home, where

volunteers pool their computing capacity and distribute

similar jobs among numerous processors or cores. Work is

split into numerous phases using the pipeline parallelism

method, allowing concurrent execution and data

transmission. Digital signal processing and video encoding

are applications where real-time data transformation and

compression are necessary. Message passing and shared

memory parallelism are used to meet the needs of several

processes or threads for data exchange and communication

[4, 5]. These techniques, which ensure synchronization and

data consistency, are crucial in multiprocessor

environments, distributed systems, and multithreaded

applications.

The foundation of cloud computing, distributed

databases, and scientific research initiatives that need

significant computational resources is distributed

computing, which scales processing over networks and

involves several computers or nodes working together to

solve complicated problems. Deep learning, scientific

simulations, and a wide range of high-performance

computing (HPC) jobs are just a few of the tasks that GPU

computing finds widespread use in. GPU computing

172

harnesses Graphics Processing Units' parallel processing

power [6, 7].

Choosing a particular parallel computing paradigm

depends on several variables, including the task's nature, the

available hardware infrastructure, and the required

performance levels. The landscape of parallel computing,

which enables the effective resolution of complex problems

across various areas, is an example of its versatility,

significance, and transformational impact on modern

computing.

II. LITERATURE REVIEW

The necessity for considerable GPU resources, CPU

parallelization, and Neural Network (NN) architectures in

contemporary Machine Learning (ML) applications was

covered by Goncharo et al. [8]. Due to its lack of multi-GPU

training capabilities and adequate parallel CPU data

preparation, the Ariadne library—created to solve

challenging high-energy physics tracking issues using deep

neural networks—faces a particular hurdle.

The authors explain their method for enabling multi-

GPU training within the Ariadne library (see Fig. 1) in

response to these difficulties. Their approach consists of

several crucial elements: effective data caching, parallel

CPU-based data preprocessing, and a general ML

experiment structure designed for deep neural network

model development, training, and inference. The authors

also summarize their findings, highlighting the gains in

speed and efficiency made possible by the GOVORUN

computer resources.

This work improves the Ariadne library's capacity to

handle challenging high-energy physics tracking problems

by adding multi-GPU training and effective CPU

parallelization. This work addresses the crucial need for

scaling ML and NN applications.

A cutting-edge technology called PipeDream was

created by Harlap et al. [9] to train Deep Neural Networks

(DNNs) using GPUs. PipeDream uses a pipeline parallel

computing architecture, which spreads computation over

numerous computers, in contrast to conventional data-

parallel training techniques. This method reduces the high

communication-to-computation ratios from working with

huge models or networks with limited bandwidth.

With PipeDream, communication overhead is

significantly reduced compared to data-parallel training,

with up to 95% reductions seen for big DNNs. Fig. 2 shows

the high-level workflow of PipeDream. Additionally, it

provides continuous processing and communication overlap,

assuring maximum GPU utilization. PipeDream carefully

allocates DNN layers across the available GPUs to balance

workloads and reduce communication needs. Additionally,

it uses parameter versioning for backward pass accuracy and

round-robin scheduling for forward and backward passes on

various inputs to enhance "time to target accuracy".

Using PipeDream with different DNNs on different

clusters, experiments have shown how successful it is.

Compared to conventional data-parallel training approaches,

it has been discovered to be up to 5 times quicker in

achieving goal accuracy. For large-scale deep learning

applications, PipeDream offers improved efficiency, less

communication overhead, and faster time-to-accuracy and is

a significant development in DNN training.

The DNN training requires a lot of computing and might

take days to weeks to finish. Parallel execution using

Graphics Processing Units (GPUs) has been a popular

strategy to speed up this training. The most common

approach, data parallelism, is easier to implement but suffers

from high inter-GPU communication costs because of

frequent weight synchronization.

Pipelined model parallelism is an alternate strategy that

divides the DNN model among GPUs to enable concurrent

processing of several mini-batches. Compared to data

parallelism, the method proposed by Chen et al. [10] lowers

inter-GPU communication costs, but it still struggles with

weight staleness. Gradients are calculated using out-of-date

weights, which causes training instability and accuracy loss.

The pipelined model, the parallel execution strategy

described in [10], maximizes GPU utilization while

maintaining training accuracy. This is accomplished using a

brand-new weight prediction method called "SpecTrain."

Compared to data parallelism on a 4-GPU platform,

experimental findings show that this strategy can achieve a

tremendous speedup of increase to 8.91 times while

maintaining a similar degree of model correctness. In

conclusion, the suggested strategy addresses the trade-off

between GPU utilization and training accuracy that afflicts

current parallelization strategies and significantly improves

DNN training efficiency.

Huang et al. [11] introduced GPipe, a novel pipeline

parallelism library designed to address the challenge of

efficiently scaling DNN capacity for various machine-

learning tasks. Scaling up DNN capacity has proven

effective in enhancing model quality but often necessitates

specialized algorithms or infrastructure when the model size

exceeds the memory limits of a single accelerator. These

solutions tend to be architecture-specific and lack general

applicability across different tasks.

Meanwhile, GPipe provides a practical and task-

independent model parallelism solution. This is

accomplished by scaling any network represented as a series

of layers. Multiple sub-sequences of layers are distributed

among various accelerators using GPipe's pipeline

parallelism method. This architecture offers the adaptability

to grow various networks quickly to much bigger sizes—the

sequence of operations given in Fig. 3.

Its main innovation is the batch-splitting pipelining

approach GPipe uses, which achieves almost linear speedup

when dividing a model over several accelerators. The paper

uses two unique projects with various network topologies to

demonstrate the benefits of GPipe in practice.

1. Image classification: Using GPipe, an astounding 557

million-parameter AmoebaNet model is trained,

and it uses the ImageNet-2012 dataset to achieve a

top-one accuracy of 84.4%.

2. GPipe is used to train a single 6-billion-parameter,

128-layer Transformer model on a heterogeneous

173

corpus covering more than 100 languages for

multilingual neural machine translation. This

model performs better than all bilingual models,

proving the value of GPipe for challenging,

extensive multilingual jobs.

In conclusion, GPipe is a vital tool for enhancing the

quality and capabilities of machine learning models since it

provides a robust solution for effectively scaling deep neural

network capacity across various workloads.

The methods for training huge transformer models that

Shoeybi et al. [12] presented have shown considerable

improvements in Natural Language Processing (NLP)

applications. Large models, however, pose difficulties

because of memory limitations. The authors of this study

presented an effective intra-layer model parallel technique

that makes it possible to train transformer models with a

massive number of parameters. Notably, their method

requires only a few communication operations within native

PyTorch and may be easily implemented without requiring

modifications to compilers or libraries. Pipeline model

parallelism is opposed to and complemented by this method.

The authors demonstrate their methodology and

impressive results by leveraging 512 GPUs to train

transformer-based models with up to 8.3 billion parameters.

Compared to a robust single GPU baseline that can handle

39 TeraFLOPs (about 30% of peak FLOPs), they can handle

15.1 PetaFLOPs of processing power throughout the

application with 76% scaling efficiency. The researchers

trained an 8.3 billion variable transformers language model

(similar to GPT (Generative Pre-Trained Transformer 2))

version 2 and a 3.9 billion parameter model (similar to

BERT (Bidirectional Encoder Representations from

Transformers)) to show the impact of substantial language

models. They emphasize the relevance of optimizing the

layer normalization location as the model size grows in

BERT-like models.

Fig. 1. Process setup and train setup of Ariadne API

174

Fig. 2. Pipedream’s automated mechanism to partition DNN layers into stages. pipedream first profiles the input DNN to get estimates for each layer’s

compute time and output size. Using these estimates, pipedream’s optimizer partitions layers across available

Fig. 3. (a) Illustrates a NN partitioned across four accelerators, (b) The inefficiency of the naive model parallelism strategy due to sequential network

dependencies. (c) Introduces pipeline parallelism

On the WikiText103 and LAMBADA datasets, the

authors produce cutting-edge results using the GPT-2

model, outperforming the prior best perplexity and accuracy

scores. On the RACE dataset, their BERT model achieves

advanced accuracy. In conclusion, the research provides

methods for effectively training enormous transformer

models, exemplifying their efficacy by excellent scaling and

attaining cutting-edge outcomes on distinct NLP datasets.

These developments may further improve the capabilities of

huge language models in natural language processing.

The difficulties of training big DNN models, which have

been expanding in size to increase accuracy and quality,

were discussed by Park et al. in their study [13]. Such

models frequently need to be trained to utilize a

heterogeneous cluster of GPUs, including weaker GPUs

unsuitable for training alone.

The authors respond to this problem by introducing

HetPipe (Heterogeneous Pipeline), a DNN training method

that combines data parallelism (DP) with pipelined model

parallelism (PMP). In HetPipe, several GPUs create a virtual

worker that executes minibatches in a pipelined manner.

175

Then, data parallelism is used by several virtual workers to

improve performance further. The research also offers Wave

Synchronous Parallel (WSP), a revolutionary parameter

synchronization technique that supports both PMP and DP

for virtual workers. Notably, the authors provide

convergence evidence for WSP, guaranteeing the

effectiveness and efficiency of the training procedure.

Fig. 4 depicts the architecture of the proposed H-node

cluster system. Each node has a homogeneous set of GPUs,

but the nodes' GPUs (and memory capacity) can be

heterogeneous. The efficiency of HetPipe has been

demonstrated by experimental findings in a diverse

environment. HetPipe allows up to 49% quicker

convergence of DNN models than state-of-the-art DP

methods. This method significantly improves the effective

training of large DNN models on heterogeneous GPU

clusters. It enables using a range of GPUs, including less

capable ones, to increase the speed and quality of model

training.

Fig. 4. The architecture of the proposed cluster system

Fig. 5. Illustration of Xpipe workflow on the 4-GPU system. Top: Xpipe workflow with micro batches = 2; Bottom: Xpipe workflow with micro batches = 4,

Adopted from [15]

In distributed stochastic gradient descent (SGD) training

of DNNs, the communication bottleneck problem was first

addressed by Ström [14]. Due to the frequent necessity for

synchronization of a model replica between compute nodes

in data-parallel SGD, which results in a high communication

cost, this issue emerges.

The suggested approach addresses this issue by

purposefully regulating the rate of weight updates for

specific weights inside the model. This differs from the

conventional method, which imposes a consistent update

rate based on the size of a mini-batch. According to the

empirical data in the study, this approach can significantly

reduce communication needs during the training of a

standard DNN for tasks like acoustic modeling by as much

as three orders of magnitude. This technology's decreased

communication bandwidth enables scalability to more

parallel GPU nodes more effectively than any other known

approach. Surprisingly, this increased scalability is attained

without compromising the DNN model's accuracy or

convergence rate.

176

This method's noteworthy benefit is enabling training on

commodity cloud networking and equipment, making it

available and affordable. In conclusion, the study offers a

novel approach to the communication bottleneck issue in

distributed DNN training, notably lowering communication

costs and enabling effective scaling while preserving model

convergence and accuracy.

Guan et al. [15] present XPipe, a novel approach for

optimizing pipeline model parallelism for training DNNs

across multiple GPUs. By introducing an efficient and

scalable pipeline model parallelism technique, the study

addresses the challenges of scaling DNN training,

particularly in the context of large-scale models. The

workflow of the XPipe is shown in Fig. 5.

The authors introduce XPipe as a solution to improve the

parallelization of DNN training across multiple GPUs in this

study. The key innovation is the pipeline parallelism

strategy, which divides and processes different segments of

the neural network concurrently across various GPUs.

XPipe optimizes this process by introducing efficient

communication techniques, overlapping computation, and

communication. XPipe significantly improves the training

efficiency of large-scale DNNs by carefully managing

pipeline stages and reducing communication overhead.

The paper provides a thorough technical analysis of the

XPipe framework, detailing its architecture and the

methodologies used for workload balancing, minimizing

communication bottlenecks, and ensuring effective

synchronization. The authors present experimental results

demonstrating that XPipe outperforms traditional

parallelization techniques. Extensive testing has revealed

that XPipe achieves remarkable speedups in DNN training

while retaining training accuracy, making it a promising

solution for large-scale DNN applications. A comparison of

HetPipe with other studies is given in Tab. 1.

GEMS [16], which stands for GPU-enabled memory-

aware Model-Parallelism System, uses GPUs to address the

challenges of large-scale DNN training by introducing

memory-aware techniques. The authors' focus in this study

is on improving the efficiency of distributed DNN training.

They present GEMS as a solution that leverages the

computational power of GPUs while keeping memory

constraints in mind. The system employs novel model-

parallelism techniques, allowing neural network models to

be distributed across multiple GPUs. What distinguishes

GEMS is its memory-aware approach, in which the system

manages memory usage intelligently, ensuring optimal

utilization of available resources without compromising

performance.

The paper provides a detailed technical overview of

GEMS, describing its architecture and the novel memory-

aware methodologies used. These techniques allow GEMS

to handle large-scale DNNs effectively, making it

particularly useful for tasks requiring extensive

computational resources and memory, such as deep learning

applications in scientific research and artificial intelligence.

Furthermore, the authors present experimental results

demonstrating the efficacy of GEMS. GEMS have

significantly improved training efficiency and memory

utilization in rigorous evaluations, making it a promising

solution for accelerating distributed DNN training tasks. The

researcher’s findings highlight GEMS’s valuable

contribution to high-performance computing, particularly in

large-scale machine learning applications.

A groundbreaking analytical model aimed at

understanding the complexities of graphics processing unit

(GPU) architectures was authored by Hong et al. [17]. The

authors acknowledge the increasing importance of GPUs in

modern computing and delve into the intricate interplay

between memory and thread parallelism within these

architectures in this study. They propose an analytical model

that captures the nuances of GPU behavior by considering

concurrent thread execution and parallel memory access

processing. This model considers the dynamic nature of

memory access patterns and thread execution, providing a

more accurate representation of real-world GPU

performance.

The components of their analytical model are

meticulously described in the paper, including how it

incorporates memory-level and thread-level parallelism

awareness. By considering these two types of parallelism,

the model provides a comprehensive understanding of GPU

execution efficiency, shedding light on the factors that

influence performance bottlenecks and throughput

limitations.

The authors also validate their analytical model by

comparing its predictions to empirical data from

fundamental GPU architectures. They demonstrate the

model's accuracy in capturing the intricate behaviors of

GPUs through rigorous analysis and experimentation, both

in terms of memory access patterns and thread execution

dynamics.

Zhou et al. [18] acknowledge the growing trend toward

billion-scale machine learning models, which present

significant challenges due to their massive memory

requirements. MPress takes a novel approach to training by

focusing on inter-operator parallelism and optimizing

memory usage. MPress reduces the memory footprint by

carefully orchestrating the data flow between operators in

the neural network, making it possible to train large models

on multi-GPU servers without excessive memory

requirements.

It explains MPress's methodology in detail, emphasizing

memory-saving techniques. These techniques include novel

inter-operator parallelism strategies allowing more efficient

use of available memory resources. MPress enables

researchers and practitioners to train billion-scale models on

conventional multi-GPU servers by reducing the memory

overhead associated with these models democratizing access

to large-scale machine learning capabilities.

Furthermore, the authors demonstrate MPress's

effectiveness in the paper's experimental results. These

experiments show significant memory savings and efficient

multi-GPU scaling when training billion-scale models,

validating the proposed framework's practical applicability

and effectiveness.

177

Zhang et al. [19]. Introduced the significance of task

parallelism in modern computing applications. They are

particularly interested in dynamic task parallelism, in which

the number and complexity of tasks can vary dynamically

during program execution. Traditional parallel processing

models face difficulties dynamically managing tasks and

allocating computational resources efficiently.

The CPU-assisted GPU thread pool model proposed here

introduces a strategic collaboration between CPUs and

GPUs. It uses a thread pool mechanism to dynamically

assign tasks to threads based on their complexity and

computational requirements. The CPU is critical in

orchestrating these tasks, distributing them efficiently

among available GPU threads. The model ensures optimal

utilization of CPU and GPU resources by intelligently

managing task allocation and synchronization.

TABLE I. COMPARISON OF HETPIPE WITH GPIPE, PIPEDREAM, AND XPIPE

The study delves into the technical aspects of this hybrid

computational model, revealing information about task

scheduling algorithms and coordination mechanisms. The

authors present experimental results that demonstrate the

efficacy of their method. These experiments show improved

performance in managing dynamic task parallelism, which

makes the proposed model especially useful for applications

with varying computational workloads.

Hong et al. [20] delved into the unique challenges posed

by GPUs. It reflects on their previous work on developing

an analytical model incorporating memory-level and thread-

level parallelism awareness.

The authors revisit their earlier work in this study and

provide a retrospective perspective on the analytical model

they developed. The model was created to account for the

complexities of GPU architectures by considering both

memory-level parallelism (MLP) and thread-level

parallelism (TLP). Memory-level parallelism refers to the

execution of memory operations concurrently, whereas

thread-level parallelism refers to executing multiple threads

together.

The work discusses the motivations for developing the

analytical model, emphasizing the importance of

understanding the dynamic interactions between memory

access patterns and thread execution behaviors in GPUs.

The authors thoroughly explain the model's components and

the methodologies used to incorporate memory and thread

parallelism awareness. They also discuss how the model has

influenced their understanding of GPU performance

characteristics, such as memory bottlenecks and thread

throughput limitations.

The work [21] emphasizes the difficulties of scaling

deep learning models to multiple GPUs, emphasizing the

importance of efficient inter-GPU communication and user-

friendly training code adaptation. The training library must

support such communication, with varying overhead

depending on the methods used, which adds to the

complications of multi-GPU training. Furthermore, users

frequently face the burden of extensively modifying their

training code to take advantage of inter-GPU

communication. Existing TensorFlow library methods are

criticized for their non-negligible communication overhead

and the significant code changes required, discouraging

many researchers from pursuing multi-GPU training.

Horovod, an open-source library designed to address these

challenges, is introduced in the paper. Horovod provides

efficient inter-GPU communication by reducing ring size,

reducing overhead, and requiring only a few lines of user

code modification. This makes distributed training in

TensorFlow faster and more accessible, addressing the

challenges of scaling modern deep learning models.

III. DISCUSSION

In the framework of current machine learning

applications, Tab. 2 summarizes the main ideas and

contributions from each of the studies mentioned.

Delving into the extensive body of literature on parallel

computing for deep learning reveals that the field has

undergone a transformative phase marked by innovative

strategies to improve the efficiency and scalability of

machine learning algorithms. This research has investigated

various parallel computing aspects, from traditional data

parallelism to ground-breaking techniques such as pipeline

parallelism, inter-operator parallelism, and memory-aware

model parallelism. These methods effectively address the

challenges posed by large-scale DNN models and serve as a

steppingstone toward democratizing access to high-

performance computing resources.

A key takeaway from this literature is the critical role of

collaboration among experts from various domains. The

Features
Model Parallelism Libraries

GPipe PipeDream HetPipe XPipe

Heterogeneous cluster support No No Yes Yes

Target large model training Yes No Yes Yes

Number of workers (virtual) 1 1 No No

Data parallelism Extensible Partition Virtual Workers Pipeline Model Parallelism

Proof of convergence Analytical Empirical Analytical Empirical

178

interdisciplinary nature of these studies, which entails the

expertise of computer scientists, engineers, and domain-

specific researchers, exemplifies the synergy that occurs

when different perspectives collide. This collaborative effort

resulted in practical solutions based on theoretical insights,

highlighting the importance of a multidisciplinary approach

in addressing complex challenges in artificial intelligence.

Furthermore, the literature emphasizes the critical

importance of considering the real-world implications of

these advances. While the studies show significant

improvements in training efficiency and model accuracy,

they highlight substantial challenges, particularly regarding

integration complexities and ethical considerations. The

seamless integration of parallel computing techniques into

existing infrastructures necessitates careful planning and

concern, particularly in industries that require real-time

processing and precision, such as healthcare and finance.

Furthermore, the environmental impact of large-scale

parallel computing cannot be ignored. The energy required

to train models grows significantly as they become more

complex. This reality necessitates a critical examination of

eco-friendly practices and the development of energy-

efficient computing solutions. Collaboration between

researchers and industry experts is essential to developing

green computing strategies, ensuring that adverse

environmental impacts do not undermine the benefits of

parallel computing.

Literature not only provides valuable insights into the

democratization of artificial intelligence, but it also

contextualizes it within practical applications. These studies

have made it possible to train sophisticated models on

standard hardware by optimizing parallel computing

techniques, making advanced machine learning capabilities

accessible to a broader audience. This democratization has

far-reaching implications, particularly in fields such as

healthcare, where AI-driven diagnostics and personalized

treatments can transform patient care, and education, where

intelligent tutoring systems can significantly improve

learning experiences. This multifaceted impact highlights

parallel computing's transformative power in shaping a more

accessible and impactful future for artificial intelligence

applications across multiple domains.

Model parallelism has demonstrated its effectiveness in

improving training efficiency and model accuracy across a

wide range of domains. Notably, in natural language

processing, BERT has used model parallelism to distribute

its massive parameters efficiently, achieving state-of-the-art

results in tasks such as question answering and sentiment

analysis. Similarly, Open AI's GPT-3 uses both data

parallelism and model parallelism, distributing model

segments across GPUs to achieve efficient training and the

generation of contextually relevant text on various prompts.

Model parallelism optimizes the training of deep

Convolutional Neural Networks (CNNs) in computer vision,

particularly for large-scale image classification tasks,

demonstrating improved efficiency and scalability.

Model parallelism is implemented in distributed deep

learning frameworks such as Horovod, reducing

communication overhead and accelerating the training of

large-scale models in tasks such as image and speech

recognition. Furthermore, model parallelism effectively

trains models representing complex policies in

reinforcement learning, particularly in applications such as

robotics. These examples demonstrate model parallelism's

versatility and success in addressing challenges associated

with large-scale deep-learning models, improving training

efficiency and model accuracy.

Model parallelism integration in deep learning

frameworks poses complex challenges requiring nuanced

solutions. One major challenge is partitioning complex

computational graphs across multiple devices, necessitating

heuristic-based approaches and optimization algorithms for

optimal distribution. Inter-device communication introduces

latency and overhead, necessitating efficiency-enhancing

strategies such as gradient compression and specialized

communication libraries such as NCCL [22]. The issue of

balancing synchronization in training, which is critical for

maintaining model integrity, is addressed using hybrid

approaches that combine synchronous and asynchronous

methods. Adaptive techniques like model slicing and

dynamic graph construction are required because of the

dynamic nature of modern network architectures, such as

recurrent neural networks and attention mechanisms.

Specialized tools like TensorFlow’s distributed tracing and

Horovod's built-in profiling capabilities debug and profile

distributed model parallel systems. It is critical to ensure

user-friendly APIs for widespread adoption, and

frameworks such as PyTorch and TensorFlow are evolving

to provide high-level abstractions, making model

parallelism more accessible. In practice, the convergence of

algorithmic advances, specialized libraries, and user-

friendly tools contributes to the efficient integration of

model parallelism, constantly refining the landscape of

distributed training in deep learning frameworks.

TABLE II. KEY FINDINGS OF THE STUDY

Study Key Findings

Goncharo et al.

[8]

They addressed the need for multi-GPU training

capabilities and effective CPU parallelization

within the Ariadne library for deep learning.

Harlap et al. [9]

They introduced PipeDream, a pipeline parallel
computing architecture, to reduce communication

overhead and maximize GPU utilization.

Chen et al. [10]

They proposed a pipelined model parallelism

strategy, including the "SpecTrain" weight

prediction method, for enhanced DNN training

efficiency.

Huang et al. [11]

They Developed GPipe, a pipeline parallelism

library for effectively scaling DNN capacity across

various machine-learning tasks.

Shoeybi et al. [12]

They Presented techniques for training large
transformer models, showcasing substantial

improvements in Natural Language Processing

applications.

Park et al. [13]

They Introduced HetPipe, a novel DNN training

method that combines data parallelism with
pipelined model parallelism for heterogeneous

GPU clusters.

179

Study Key Findings

Ström [14]

Through an innovative weight update strategy, she
addressed communication bottleneck issues in

distributed stochastic gradient descent (SGD)

training.

Guan et al. [15]

They Developed XPipe, an efficient and scalable

pipeline model parallelism technique for training

DNNs across multiple GPUs.

A. Jain et al. [16]

GEMS, a GPU-enabled memory-aware Model-

Parallelism System, enhances large-scale

distributed deep neural network training by

managing memory usage, incorporating novel
techniques, and leveraging GPU computational

power.

Hong et al. [17]

They proposed an analytical model for

understanding GPU architectures, considering

memory- and thread-level parallelism dynamics.

Zhou et al. [18]

They Introduced MPress, a memory-efficient

training approach emphasizing inter-operator

parallelism for large-scale DNN models.

Zhang et al. [19]

They highlighted the significance of task

parallelism, particularly dynamic task parallelism,

and the collaboration between CPUs and GPUs.

Hong et al. [20]

Respond to the challenges posed by GPUs by

revisiting their analytical model, emphasizing the

importance of memory-level and thread-level

parallelism awareness, and demonstrating its
accurate prediction of GPU-based system behavior

through validation against real-world

implementations.

Sergeev et al. [21]

The article discusses the challenges of training

deep learning models on multiple GPUs,
introducing Horovod, an open-source library that

simplifies distributed training in TensorFlow,

enhancing model performance.

IV. CONCLUSION

The literature review emphasizes parallel computing

techniques' transformative impact on deep learning and

computational science. The transition from traditional data

parallelism to novel methods such as pipeline parallelism,

inter-operator parallelism, and memory-aware model

parallelism represents a significant step forward in large-

scale machine learning tasks. These methods improve DNN

training efficiency and democratize access to complex

models, allowing for exploration in areas such as natural

language processing and scientific simulations. However,

challenges remain, necessitating ongoing research to

integrate these techniques seamlessly into existing

infrastructures and address emerging ethical and

environmental concerns related to large-scale computing.

Collaboration, ethics, and sustainability are critical in

realizing parallel computing's potential for societal

improvement and human knowledge advancement.

Reviewing the extensive literature on model parallelism

in GPU computing reveals significant research gaps. It is

critical to optimize techniques for heterogeneous GPU

architectures to use GPUs with varying capabilities

efficiently. Scalability studies are critical for investigating

the limits of model parallelism as deep learning models

grow, as well as trade-offs between model size, GPU

numbers, and communication overhead. Due to the lack of

dynamic workload management strategies, adaptive model

parallelism techniques that can distribute model layers based

on varying computational requirements are required.

Model energy-efficient parallelism is essential,

prompting research into techniques that optimize energy

usage while maintaining accuracy. Protocols enabling

seamless integration of model parallelism into popular deep

learning frameworks are required to address standardization

and compatibility issues across frameworks. There is a lack

of empirical studies across a wide range of real-world

applications, emphasizing the need for practical

implementations to assess model parallelism's performance,

challenges, and domain-specific enhancements. It is critical

to close these gaps if model parallelism in GPU computing

is to progress and become widely used.

Model parallelism is revolutionizing various aspects of

medical applications in the healthcare sector. Model

parallelism is used in medical imaging to improve the

accuracy and efficiency of deep learning models, resulting

in more precise diagnoses and treatment plans. The

technology speeds up drug discovery processes by more

accurately predicting molecular interactions, potentially

leading to the development of new medications. Model

parallelism is also used in disease prediction based on

comprehensive patient data, genomics, and clinical records,

promoting early interventions and personalized treatment

strategies. Model parallelism causes transformative changes

in education, particularly in personalized learning. Model

parallelism-based adaptive learning models cater to

individual student needs and learning styles, increasing

engagement and academic performance. Natural language

processing applications in education, such as automated

grading and language tutoring, are powered by technology,

providing students with timely and personalized feedback.

Furthermore, model parallelism in educational research

facilitates the training of sophisticated models to understand

learning behaviors and predict student outcomes, enabling

evidence-based strategies for improved learning

experiences. These applications highlight the tangible

benefits of model parallelism in healthcare and education,

providing unprecedented accuracy, efficiency, and

personalization advances.

REFERENCES

[1] R. Tudoran, A. Costan, and G. Antoniu, “OverFlow: Multi-site aware
big data management for scientific workflows on clouds,” IEEE
Transactions on Cloud Computing, vol. 4, Art. no. 1, 2016

[2] H. Sharma et al., “Bit fusion: Bit-level dynamically composable
architecture for accelerating deep neural network,” 2018, pp. 764–
775.

[3] S. Ghodrati, H. Sharma, C. Young, N. S. Kim, and H. Esmaeilzadeh,
“Bit-parallel vector composability for neural acceleration,” 2020, pp.
1–6.

[4] Z. Li et al., “TeraPipe: Token-level pipeline parallelism for training
large-scale language models,” M. Meila and T. Zhang, Eds., PMLR,
2021, pp. 6543–6552

[5] C.-H. Chiu and T.-W. Huang, “Composing pipeline parallelism using
control taskflow graph,” Minneapolis, MN, USA: Association for
Computing Machinery, 2022, pp. 283–284.

[6] M. Hojnacki et al., “Parallel computation of gröbner bases on a
graphics processing unit,” Arabnia, Hamid R, L. Deligiannidis, M. R.
Grimaila, D. D. Hodson, K. Joe, M. Sekijima, and F. G. Tinetti, Eds.,
Springer International Publishing, 2021, pp. 417–432.

180

[7] A. Ruokamo, “Parallel computing and parallel programming models:
application in digital image processing in mobile systems and
personal mobile devices,” 2018.

[8] M. Manual, “Heavy Metals, Nitrogen and POPs in European Mosses:
2020 Survey.”

[9] A. Harlap et al., “Pipedream: Fast and efficient pipeline parallel dnn
training,” arXiv preprint arXiv:1806.03377, 2018.

[10] C. Chen, C. Yang, and H. Cheng, “Efficient and robust parallel dnn
training through model parallelism on multigpu platform,” arXiv
preprint arXiv:1809.02839, 2018.

[11] Y. Huang et al., “GPipe: Easy scaling with microbatch pipeline
parallelism,” arXiv preprint arXiv:1811.06965, 2018.

[12] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B.
Catanzaro, “Megatronlm: Training multibillion parameter language
models using model parallelism,” arXiv preprint arXiv:1909.08053,
2019.

[13] J. H. Park et al., “{HetPipe}: Enabling large {DNN} training on
(whimpy) heterogeneous {GPU} clusters through integration of
pipelined model parallelism and data parallelism,” in 2020 USENIX
Annual Technical Conference (USENIX ATC 20), 2020, pp. 307–
321.

[14] N. Ström, “Scalable distributed DNN training using commodity GPU
cloud computing,” 2015.

[15] L. Guan, W. Yin, D. Li, and X. Lu, “XPipe: Efficient pipeline model
parallelism for multiGPU DNN training,” arXiv preprint
arXiv:1911.04610, 2019.

[16] A. Jain et al., “Gems: Gpuenabled memoryaware modelparallelism
system for distributed dnn training,” in SC20: International
Conference for High Performance Computing, Networking, Storage
and Analysis, IEEE, 2020, pp. 1–15.

[17] S. Hong and H. Kim, “An analytical model for a GPU architecture
with memorylevel and threadlevel parallelism awareness,” in
Proceedings of the 36th annual international symposium on Computer
architecture, 2009, pp. 152–163.

[18] Q. Zhou et al., “MPress: Democratizing Billion-Scale Model Training
on Multi-GPU Servers via Memory-Saving Inter-Operator
Parallelism,” Feb. 2023, doi:
https://doi.org/10.1109/hpca56546.2023.10071077.

[19] S. Zhang, T. Li, Q. Dong, X. Liu, and Y. Yang, “CPU-assisted GPU
thread pool model for dynamic task parallelism,” Aug. 2015

[20] S. Hong and H. Kim, “Memorylevel and threadlevel parallelism
aware gpu architecture performance analytical model,” 2009.

[21] A. Sergeev and D. Balso, “Horovod: fast and easy distributed deep
learning in TensorFlow,” arXiv.org, 2018.
https://arxiv.org/abs/1802.05799 (accessed Nov. 25, 2023).

[22] “NVIDIA Collective Communications Library (NCCL),” NVIDIA
Developer, 2023. https://developer.nvidia.com/nccl (accessed Nov.
25, 2023).

181

	I. Introduction
	II. Literature Review
	III. Discussion
	IV. Conclusion
	References

