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Abstract—Time-frequency analysis serves as a pivotal tool in 

unraveling the intricate dynamics of signals evolving over time. 

Through the meticulous dissection of signals into their 

frequency components at specific time intervals, this method 

provides a nuanced understanding of transient events. This 

capability empowers researchers and practitioners to discern 

temporal patterns and unveil hidden structures within complex 

data, enhancing their ability to extract valuable insights from 

dynamic signal variations. In the present study, the methods of 

Time- frequency analysis is used for a qualitative analysis of 

music signals.  The Short Time Fourier Transformation (STFT) 

and Continuous Wavelet Transformation (CWT) were 

investigated to discover music signal interpretations. The results 

of frequency approaches with time were implemented using 

Python Programming Language as Spectrograms and 

Scalograms. 
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I. INTRODUCTION 

Signal processing has been completely transformed by the 

use of time-frequency approaches, particularly in the analysis 

of musical signals. They provide a special method for 

analyzing and interpreting signals' complex and dynamic 

properties in both the time and frequency domains. The Short-

Time Fourier Transform (STFT) was first introduced by 

Gabor in the early 20th century, which is when time frequency 

analysis began to take shape. Lately, wavelet transforms, 

spectrograms, and more sophisticated methods like the 

Continuous Wavelet Transform (CWT) and the Discrete 

Wavelet Transform (DWT) contributed to the field's 

substantial developments. Time-frequency techniques are 

used in a variety of industries, including wireless technology, 

seismic data analysis, voice processing, biological signal 

processing, and image processing. In terms of thorough 

representation, transcription and score following, feature 

extraction for pitch, rhythm, and harmony, and music 

classification, time-frequency approaches have benefits in the 

study of music signals. In addition to giving detailed 

information on musical content, they aid in detecting musical 

variations, distinguishing between instruments, transcribing 

music, extracting features for information retrieval and 

automatic music recommendation systems, and etc. The 

present study uses time-frequency methods to uncover such 

characteristics of music transmissions. 

II. TIME FREQUENCY ANALYSIS 

Time-Frequency Analysis is the study of the frequency 

variations of signals with respect to time. Various types of 

time-frequency analysis techniques can be used in real-world 

situations in order to discover the information that lies within 
non-stationary signals. For the analytical modification of 

various sorts of signal processing applications, the Fourier 

Transformation was developed further. As an approach for 

time-frequency analysis, the Short-Time Fourier 

Transformation (STFT) was initially established. The 

Continuous Wavelet Transform (CWT) was a technique that 

was later developed and is capable of being used in a variety 

of signal processing applications. [4] Both techniques are 

beneficial for musical signal processing since finding 

information results in inventive musical solutions.  

A. Short-Time Fourier Transformation 

The Short-Time Fourier Transform (STFT), introduced by 

D. Gabor in 1971, is a signal processing method that examines 

a signal's time-frequency properties. It is also known as Gabor 

Transformation which uses a window function to split a larger 

signal into shorter segments, calculates the Fourier Transform 

for each windowed segment, and outputs a spectrogram, 

which is a representation of the signal's time and frequency. 

The STFT is frequently used in vibration analysis, voice 

analysis, and audio signal processing.  

B. Continuous Wavelet Transformation 

A time-frequency analysis method known as the 

Continuous Wavelet Transform (CWT) analyzes the localized 

frequency content of a signal over time. It is also known as 

Multi-resolution Analysis and involves visualizing a signal as 

a scalogram and is based on wavelets, localized functions in 

both time and frequency. CWT is the convolution of the signal 

with a scaled and translated version of the wavelets and finds 

applications in scientific research, image analysis, and signal 

processing.   

III. GABOR TRANSFORMATION (STFT) 

A. Fourier Transformation (FT) 

Fourier Transformation is a mathematical technique 

introduced by J.B. Joseph Fourier in the 19th century. It 

decomposes complex signals into sine and cosine waves, 

revealing the signal’s frequency components. The 

transformation is represented mathematically converting 

signal functions from time domain to frequency domain which 

are absolutely integrable and piecewise smooth.  

i.e.  taking the signal function over time domain to be f(t), 

the function is well defined and integral of the function is not 

divergent and clearly exists which implies the integral is 

convergent over time domain. [2] One continuous function is 
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transformed at a time by the operation, which was the primary 

driver behind continued development of the transformation. 

B. Discrete Fourier Transformation (DFT) 

Discrete Fourier Transformation is a modification of FT 

which can be used to transform set of stationary functions at 

a time to its frequency components. The method was 

introduced by Carl Friedrich Gauss (1777-1855) which    

involved with computations with matrices to obtain the 

Fourier Transform of a signal. In DFT, if the number of data 

functions to be considered is n, then n² number of operations 

is conducted in order to output n number of frequency 

components as a sum of FTs. 

 Initially, the Discrete Fourier Transform (DFT) held 

prominence in signal processing studies. However, as the 

demand arose for the analysis of extensive datasets, 

exemplified by instances involving a considerable number of 

data points (such as 1010), there emerged a necessity for a 

more sophisticated approach. 

C. Fast Fourier Transformation (FFT) 

FFT, introduced by J. Cooley and J. Tuckey around 1965 

is a convenient computational algorithm of DFT which 

involves (n log n) number of operations for n number of data 

points [1]. The transformation classifies the number of data 

points continuously into odd and even functions and reduces 

calculations further and output computational finite sum of 

Fourier Transformations. 

D. Windowing and STFT 

The Short-Time Fourier Transformation is used for non- 

stationary signals with the aid of a suitable windowing 

function. [1] Applying a windowing function that is 

compactly supported and overlapped to the signal considers 

small chunks of the original signal for the transformation. 

Different types of windowing functions which changes their 

applications used according to the characteristics are: 

• Hann Window (J.V. Hann, 1928)  

• Hamming Window (R.W. Hamming, 20th cent.)  

• Gaussian Window (C.F. Gauss, 19th cent.)  

• Shannon Window (C. Shannon, 19th cent.)  

The convolution theorem to the original signal and 

window function results a sequence of functions of FFTs. The 

convolution theorem in time domain results a product of two 

frequency components; signal component and shifted window 

function. 

i.e.  a finite sequence of    ℱ(𝑓(𝑡𝑘)). ℱ(𝑤(𝑡𝑘 − 𝜏𝑘)) 

E. Spectrogram  Analysis 

The sequential implementation obtained in STFT results 

the time- frequency variations of the signal in one frame which 

is known as, Spectrogram. [6] It is a representation of the 

intensity plot of the STFT magnitude showing at which time 

durations the respective frequencies occurred at in the signal. 

The variations of frequencies (Y- axis) with respect to the time 

(X- axis) can be plotted using a computer programming 

software. In this study, Python is used to generate 

spectrograms with corresponding arguments. 

IV. INTERPRETING A MUSIC SIGNAL USING STFT 

A. Music Signal 

As the first attempt of interpretation, analysis of a portion 

of a 14-second sound signal is used to identify major 

characteristics of a spectrogram, which is a raw piano input. 

The sound signal was extracted from the chorus of the song, 

“Mary Had a Little Lamb”.   

B. Solution by Python 

The Python solution contained libraries for the plot of 

spectrogram and arguments of sending the audio file as an 

input, arguments of windowing and FFT process and 

arguments of plotting were feed into the code. The different 

values for nperseg, noverlap, nFFT arguments output 

different spectrograms with visible changes. In Python, the 

default window in use is Hann Window which automatically 

aid in implementing the spectrogram. Use of any window that 

is not Hann has to be defined in the programme.  

The nperseg value corresponds to the number of segments 

per windowing at one time or window width and noverlap is 

giving the number of segments that are going to be 

overlapped with windowing before and after the current 

consideration. nFFT value corresponds to the number of data 

points that the audio signal is chunked into for applying FFT.  

 

Fig. 1. Resulting Spectrogram with nperseg-2048, noverlap-1024, nfft-

2048 

C. Spectrogram Analysis–Varying Window width  

The spectrogram observed for a large value for nperseg 

implements with better frequency resolution but lower time 

resolution which is known as “Under-sampling” of a signal. 

In contrast, “Over- Sampling” occurs when nperseg is lower 

results with higher time resolution but poor frequency 

resolution. (Fig. 2) 

Fig. 2. Over- Sampling and Under- Sampling 

D. Spectrogram Analysis – Varying Number of Data Points 

The spectrogram obtained for higher values of nFFT 

implements spectrograms with finer frequency details of the 

signal but with poor time resolution. The lower nFFT values 

outputs a spectrogram with rapid time changes but with poor 

frequency resolution. (Fig. 3) 
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Fig. 3. Rapid Time changes and Finer Frequency Details with the change of 

nFFT 

E. Spectrogram Analysis – Varying the type of window 

The Mexican Hat Wavelet window, Shannon Window 

and Gaussian Window were defined and applied to the sound 

signal to investigate the features of resulting spectrograms. 

(Fig. 4) 

  (a)          (b)         

(c) 

Fig. 4. Spectrograms implemented using (a) Mexican hat wavelet 

window, (b) Shannon window and, (c) Gaussian window 

V. CONTINUOUS WAVELET TRANSFORMATION 

According to Weiner Heisenberg's (1901–

1976) uncertainty principle [8], [12] encoding time and 

frequency data of a signal simultaneously is essentially 

challenging. 

The Heisenberg Uncertainty Principle: A function 𝒇 

and its Plancherel transform 𝓟(𝒇)  cannot both have 

arbitrarily small support. 

As a consequence, CWT is also has been widely used in 

signal processing as a time-frequency analysis technique [8]. 

The CWT is particularly useful for analyzing signals that have 

non-stationary or time-varying characteristics. The 

transformation is constructed using a particular function 

called the Wavelet Function, which yields a CWT matrix 

(Scalogram) that visualizes the change in the frequency 

content of the signal over time at various scales. 

A. Wavelet Function and CWT 

The CWT is proceeded for non-stationary signals but 

offering insights into both high and low frequency 

components with their temporal evolution. [5] The 

transformation is carried out using a wavelet function denoted 

as 𝜓(𝑡) (mother wavelet) which can be scaled and translated 

prior using it to the signal unlike the window functions in 

STFT which had a fixed width for an instance. This function 

is typically a short-lived oscillation, and it is used to analyze 

the signal at different scales and positions in time. A wavelet 

function is only can be used if it satisfies two main 

constraints: zero mean as the admissibility condition and 

finite energy as the necessary condition [12]. 

i.e.    ∫ 𝜓(𝑡)𝑑𝑡 = 0
∞

−∞
   and    0 < ∫ |𝜓(𝑡)|2 𝑑𝑡 < ∞

∞

−∞
 

There are various types of wavelet functions where the 

type of the wavelet affects the characteristics of the analysis. 

[11] Types of wavelet functions can be mentioned as follows: 

• Haar Wavelet (A. Haar, 1909) 

• Morlet Wavelet (J. Morlet, 1983) 

• Gabor Wavelet (D. Gabor, 1946) 

• Daubechies Wavelet (I. Daubechies, 1960) 

CWT is calculated by applying the convolution theorem to 

the audio signal and the complex conjugate of the scaled and 

translated wavelet function: 

𝒲𝜓(𝑓)(𝑎, 𝑏) =  
1

√𝑎
∫ 𝑓(𝑡). 𝜓∗ (

𝑡 − 𝑏

𝑎
)

∞

−∞

𝑑𝑡 

where 𝑎  is the scaling parameter and 𝑏  is the translation 

parameter. [9], [10]. 

B. Scalogram Analysis 

The CWT formula's continuous integral is calculated 

numerically. The wavelet and the signal convolve at multiple 

scales and positions by varying the scale and position 

parameters. The magnitudes of the wavelet coefficients of the 

signal at various scales and time localizations is represented 

by the entries in the CWT matrix and visually represented in 

the Scalogram [1]. The variations of scales (Y-axis) with 

respect to the time (X-axis) can be plotted in here. In this 

study, Python is used to generate scalograms with 

corresponding arguments. 

VI. INTERPRETING A MUSIC SIGNAL USING CWT 

A. Music Signal and the Solution by Python 

The music signal used is the chorus of “Mary Had a 

Little Lamb” which was used in spectrogram analysis in the 

study of STFT. (Fig. 5) In the case, the python solution 

contains specific libraries for CWT algorithms and arguments 

to use wavelets and output scalograms for audio signals. 

“Width scale” is the main argument that can be varied to 

analyze the audio signal with different scalograms. 

 

Fig. 5. Scalogram using morlet wavelet width= (1,31) 
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Width scale is an array of scales (or widths) that 

determines the range of scales for the wavelet and wavelet 

frequency represents the frequency of the oscillatory part of 

the corresponding wavelet which can be changed according 

to the frequency range of the signal.  The wavelet that is being 

used has to be defined to the programme. 

B. Scalogram Analysis–Varying Width Scale 

The scalogram obtained for large scales is more sensitive 

to capture low frequencies of the signal averaging out high 

frequency components. The characteristic is useful to analyze 

slow changes and identify global patterns of the signal. The 

morlet wavelet is used for following observations. This 

property is advantageous in music signal processing to 

analyze musical expressions with related to the intensity of 

the sound and temporal changes (Fig. 6). 

 

VII. CONCLUSION 

Implementing spectrograms with considerably higher 

values for nFFT with lower values for window width than 

nFFT value is allowed. Interpretation of higher nFFT values 

for sound signals with large number of instruments taking 

more time to implement but with fine frequency details. Bell-

shaped curves, exemplified by Gaussian or Mexican Hat 

wavelets, prove highly effective in acute audio signal 

processing. In contrast, rectangular windows, such as the 

Shannon window, are not recommended as they fail to 

provide optimal data representation for this context. The use 

of bell-shaped wavelets ensures a more nuanced and accurate 

analysis of audio signals, capturing subtle variations and 

nuances that might be overlooked by less suitable windowing 

functions. 

The interpretation of scalograms takes a significant leap 

forward with an advanced STFT model, where the flexibility 

of wavelets in scaling proves particularly advantageous for 

audio signals. In this refined approach, scaling is plotted in 

lieu of frequency over time, offering a more adaptive 

representation. The utility of wavelet transformation in audio 

signals lies in its capacity to capture not just frequencies but 

also the intensity or magnitudes at specific time instances. 

This characteristic becomes instrumental in analyzing the 

dynamic intricacies of musical expressions, such as 

crescendos and decrescendos, providing a nuanced 

understanding of sound evolution [3]. 

The integration of spectrogram and scalogram 

implementations opens up innovative possibilities, such as 

the creation of an interactive music instrument program 

capable of detecting and measuring user-initiated tempos. A 

promising avenue for future research involves the 

exploration of musical note recognition systems through 

spectrogram analysis, presenting opportunities to deepen our 

understanding of musical structures and enhance interactive 

music technology. 
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