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Abstract— The study of continued fractions is a significant area 

of mathematics with diverse applications, particularly in the 

field of factorization. Continued fractions can be used to 

approximate irrational numbers and are integral to algorithms 

for factoring integers. In this study, we present a novel method 

for factoring large integers that utilize generalized continued 

fractions to improve efficient factorization. Additionally, we 

introduce several theoretical statements about generalized 

continued fractions and demonstrate their application within 

the proposed factorization algorithm. Using this algorithm, we 

successfully factor a large integer into two prime numbers, 

whose product constitutes the original large number. Our 

findings suggest that this method is a highly effective tool in 

number theory, cryptography, and computational mathematics. 

Keywords—continued fractions, generalized continued fractions, 

integer factorization, prime numbers 

 

I. INTRODUCTION 

Integer factorization is the decomposition of a positive 
integer into a product of integers. The study of integer 
factorization has a very long history and the studies have a 
wide range of applications. Although there are many different 
integer factorization algorithms to choose from, we will focus 
on integer factorization method by using continued fractions 
called as CFRAC algorithm. First, CFRAC algorithm was 
founded by D. H. Lehmer and R. E. Powers in 1931, and 
developed as a computer algorithm by Michael A. Morrison 
and John Brillhart in 1975. The CFRAC algorithm has the 
ability to factor integers that are fifty digits or less. In the 
present study, we will describe a method of factoring large 
integers by using generalized continued fractions, it is a 
generalization of regular continued fractions in canonical 
form. Before we start looking at this algorithm, we will 
explore the theoretical foundations of generalized continued 
fractions. 
 
Definition 1.1. 
A generalized continued fraction is an expression of the form, 
 

 

𝑥 = 𝑏0 +  
𝑎1

𝑏1 +  
𝑎2

𝑏2 +  
𝑎3

𝑏3 + 
𝑎4

𝑏4+ ⋱

 (1) 

 

 
where 𝑎𝑘(𝑘 > 0)are the partial numerators, 𝑏𝑘 (𝑘 > 0) are 

the partial denominators, and the leading term 𝑏0 is called the 

integer part of the continued fraction. 

Generalized continued fractions may also be written in the 
forms 

𝑥 =  𝑏0 +  
𝑎1

𝑏1 +

𝑎2

𝑏2 +
… (2) 

        
or 

𝑥 =  𝑏0 + ∑
𝑎𝑘

𝑏𝑘

∞

𝑘=1
(3)

 

 
For any 𝑘, a natural number, 𝑘 th convergent of (1) is given 

by, 

𝐶𝑘 =  
𝐴𝑘

𝐵𝑘

=  𝑏0 +  
𝑎1

𝑏1 +

𝑎2

𝑏2 +
… 

𝑎𝑘

+𝑏𝑘

(4)
 

 
 
Definition 1.2. 
The partial denominators of the fractions’ successive 
convergents are related by the fundamental recurrence 
formulas: 

 
𝐴𝑘 =  𝑏𝑘𝐴𝑘−1 +  𝑎𝑘𝐴𝑘−2 (5) 

 
  𝐵𝑘 =  𝑏𝑘𝐵𝑘−1  +  𝑎𝑘𝐵𝑘−2  (6) 

   
for  𝑘 ≥ 1 with initial values, 

    
𝐴−1 = 1                         𝐴0 = 𝑏0              
 
𝐵−1 = 0                         𝐵0 = 1 

 
 
Theorem 1.1. 
Suppose 𝑁 is a positive integer which is not a perfect square  

with convergent  
𝐴𝑘

𝐵𝑘

 .Then, 

 

𝐴𝑘
2 > 2√𝑁 (mod 𝑁) (7) 

 
This theorem is one of the reasons why this algorithm 
works.[6] 
 
 
Theorem 1.2. 
If 𝑁 is a composite integer, 𝑋, 𝑌 ∈ ℤ and 𝑋2 ≡  𝑌2(mod 𝑁), 

but 𝑋 ≢  ±𝑌(mod 𝑁) , then gcd (𝑋 − 𝑌, 𝑁)  and       

gcd (𝑋 + 𝑌, 𝑁) are proper factors of 𝑁. [2] 

 
 
 
 



 

 

The 𝑛𝑡ℎ root of any positive number 𝑧𝑚 can be expressed by 

restating 𝑧 =  𝑥𝑛 + 𝑦 , resulting in, 

 

√𝑧𝑚𝑛
=  √(𝑥𝑛 + 𝑦)𝑚𝑛

 

          = 𝑥𝑚 +  
𝑚𝑦

𝑛𝑥𝑛−𝑚 +
(𝑛 − 𝑚)𝑦

2𝑥𝑚 + 
(𝑛 + 𝑚)𝑦

3𝑛𝑥𝑛−𝑚 +  
(2𝑛 − 𝑚)𝑦

2𝑥𝑚+ ⋱

 
  (8)

 

 

The square root of 𝑧 is a special case with 𝑚 = 1 and 𝑛 = 2. 

So, 

√𝑧 =  √𝑥2 + 𝑦 = 𝑥 +
𝑦

2𝑥 +
𝑦

2𝑥 +
3𝑦

6𝑥 +
3𝑦

2𝑥+⋱

  (9)

 

 
which can be simplified as, 
 

√𝑧 =  √𝑥2 + 𝑦 = 𝑥 +
𝑦

2𝑥 +
𝑦

2𝑥 +
𝑦

2𝑥 +
𝑦

2𝑥+⋱

 (10)

 

 

II. METHODOLOGY 

To factor a number 𝑁(> 1), the first step is to determine 

whether 𝑁 is a perfect square or a prime power. If  𝑁 is a 

perfect square, we can find the factors by getting the square 

root of 𝑁. In the case of 𝑁 being a prime power, it can be 

expressed as 𝑁 = 𝑝𝑘, where 𝑝 is a prime number and 𝑘 is a 

positive integer. Then, assess whether 𝑁 is odd or even. If 𝑁 

is even, repeatedly factor out 2 until the number is odd. 

Hence, we can write 𝑁  as 𝑁 = 2𝑘𝑞 , where 𝑘  is a positive 

integer and 𝑞  is odd. Therefore, we consider 𝑁  is an odd, 

composite integer that is not a perfect square or prime power.  

 

We start by expanding √𝑁  as,  

 

√𝑁 =  √𝑥2 + 𝑦 = 𝑥 +
𝑦

2𝑥 +
𝑦

2𝑥 +
𝑦

2𝑥 +
𝑦

2𝑥+⋱

 (11)

 

 

 
where 𝑥, 𝑦 be positive integers, 𝑥 be the largest integer less 

than √𝑁 and 𝑦 is not a multiple of 𝑥. If 𝑦 is a multiple of 𝑥, 

say 𝑦 = 𝑘𝑥 , then we can write 

  

√𝑁 =  √𝑥2 + 𝑘𝑥 =  √𝑥(𝑥 + 𝑘) (12) 

 

Hence, we can factor 𝑁 as, 𝑁 = 𝑥(𝑥 + 𝑘). 

 
Therefore, we consider 𝑦 as not a multiple of 𝑥. By looking 

at (5), we can define 𝐴𝑘  as the numerator of the 𝑘 th 

convergent and that 𝐴𝑘 is dependent upon 𝑎𝑘 , 𝑏𝑘 , 𝐴𝑘−1, 𝐴𝑘−2. 

These 𝐴𝑘 terms represent the possible values for 𝑋 and thus  

𝐴𝑘
2  modulo 𝑁  represents the possible values for 𝑌2 , from 

which we can computer 𝐴𝑘 term of the 𝑘 th convergent  
𝐴𝑘

𝐵𝑘

 of 

the generalized continued fraction expansion of √𝑁. 

By considering the expressions (1) and (11), we obtain        
𝑎𝑘 = 𝑦, 𝑏𝑘 = 2𝑥 for all 𝑘 = 1,2,3, … and 𝑏0 =  𝑥. Next, we 

construct a table with 𝑎𝑘 , 𝑏𝑘,  𝐴𝑘(mod 𝑁) and  𝐴𝑘
2(mod 𝑁) 

terms. 

Note that, 
 

   𝐴𝑘(mod 𝑁)  ≠ √ 𝐴𝑘
2(mod 𝑁) (13)

 

 
For the corresponding 𝑘  value that satisfies the previous 

steps, let  
𝑋 =  𝐴𝑘(mod 𝑁) (14) 

then we obtain 
              

                 𝑋2 ≡ 𝑌2(mod 𝑁)  

So, 
𝑌2 =  𝐴𝑘

2 (mod 𝑁) (15) 

 
 
If 𝑋 ≡ 𝑌(mod 𝑁) , then, a new  𝐴𝑘

2 (mod 𝑁) value needs to 

be found. Otherwise, we can find the factors of 𝑁. 

 

If 𝑋 ≢ 𝑌(mod 𝑁) and 𝑋 + 𝑌 ≠ 𝑁, then we can get factors 

of 𝑁 by calculating, 

gcd (𝑋 + 𝑌, 𝑁)  

and 
gcd (𝑋 − 𝑌, 𝑁). 

 

 
III. RESULTS AND DISCUSSION 

Consider an example to find the factors of an integer. 
 
Let 𝑁 = 10123 and we can find the generalized continued 

expansion of √𝑁  in the form, 

 

√𝑁 =  √10123 =  √1002 + 123 

 

                       = 100 +
123

200 +
123

200 +
123

200 +
123

200+⋱

 

 

From the given expression we can deduce that  𝑥 = 100 and  

𝑦 = 123. Thus, we obtain  𝑎𝑘 = 123, 𝑏𝑘 = 200 for all       

𝑘 = 1,2,3, … with 𝑏0 = 100. 

Hence, we can write 𝐴𝑘 term as, 

𝐴𝑘 =  200𝐴𝑘−1 +  123𝐴𝑘−2 for   𝑘 = 1,2,3 … 
𝐴0   =  100 
𝐴−1 =  1 

 
We will compute the 𝐴𝑘(mod 𝑁) and 𝐴𝑘

2(mod 𝑁) values 

until the value of 𝐴𝑘
2(mod 𝑁) is conformed as a perfect 

square. 

 

We construct a table as follows. 
 



 

 

TABLE I.  CONTINUED FRACTION FOR  √10123 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Examining the values in the table, we observe that when 

𝑘 = 21, the corresponding 𝐴𝑘
2(mod 𝑁) value yields a 

perfect square. 

So, when  𝑘 = 21,    

𝐴𝑘
2 (mod 𝑁) = 9025 = (±95)2 

 

Then, we will verify whether 𝐴𝑘(mod 𝑁) ≠  √𝐴𝑘
2(mod 𝑁)       

Since,  𝐴𝑘(mod 𝑁) = 9264, 

𝐴𝑘(mod 𝑁) ≠  √𝐴𝑘
2(mod 𝑁)    when 𝑘 = 21 

Let 
𝑋 = 9264 (mod 10123) 

and  
 𝑌2 = 9025 = (±95)2 (mod 10123) 

This implies  𝑌 = ±95 (mod 10123) 
Also, we can observe that 𝑋 ≠ 𝑌(mod 10123)  and             

𝑋 + 𝑌 ≠ 10123 

 

Therefore, we can find the factors of 𝑁 = 10123 by 

calculating  gcd(𝑋 + 𝑌, 𝑁) and gcd(𝑋 − 𝑌, 𝑁). 

 

 

     gcd(𝑋 + 𝑌, 𝑁) = gcd(9264 + 95, 10123) 

  = gcd (9359, 10123) 

                     = 191 

and 
    gcd(𝑋 − 𝑌, 𝑁) = gcd(9264 − 95, 10123) 

                     = gcd (9169, 10123) 

                     = 53 

                                    

 Therefore,    

𝑁 = 10123 = 191 × 53. 

 

 

Recall that we are trying to solve  𝑋2 ≡  𝑌2(mod 𝑁)   where 

𝑋 ≠ 𝑌(mod 10123) . In this algorithm, we utilize the 

numerators of the convergent to represent values for 𝑋 .The 

numerator of the convergent squared is going to be greater 

than −2√𝑁 and less than 2√𝑁 according to the theorem 1.1. 

This bounding is significant, because this will in turn create 

smaller prime. We could have to attempt to determine the 

prime factorization of a large number if we did not have this 

constraint. In general, this is an issue because factoring a 

large number is quite challenging. Hence, this simplification 

is the key to the overall effectiveness of the factorization 

process. 

 

IV. CONCLUSION 

In this research, we developed a factorization algorithm based 

on generalized continued fractions. As an application, this 

can be utilized to effectively decrypt messages encoded using 

cryptographic algorithms such as RSA encryption. This 

algorithm not only offers a practical and straightforward 

approach for small-scale cases but is also designed to be 

easily understood and implemented. For future 

enhancements, we plan to implement the algorithm in a 

programming language and conduct comprehensive testing 

across a diverse range of integers, from small to large. 

Furthermore, we will compare the efficiency of our algorithm 

with other established factorization techniques, thereby 

contributing valuable insights to the field of cryptography. 
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𝒌 𝒂𝒌 𝒃𝒌  𝑨𝒌(𝐦𝐨𝐝 𝑵) 𝑨𝒌
𝟐(𝐦𝐨𝐝 𝑵) 

0 - 100 100 10000 

1 123 200 10000 5006 

2 123 200 7946 1765 

3 123 200 5006 5611 

4 123 200 4573 8334 

5 123 200 1765 7464 

6 123 200 4409 3121 

7 123 200 5611 791 

8 123 200 4335 3937 

9 123 200 8334 1653 

10 123 200 3314 9264 

11 123 200 7464 4427 

12 123 200 7421 2121 

13 123 200 3121 2315 

14 123 200 8410 8822 

15 123 200 791 8178 

16 123 200 8239 6406 

17 123 200 3937 1656 

18 123 200 9026 8895 

19 123 200 1653 9322 

20 123 200 3332 7416 

21 123 200 9264 9025 


