Thermally oxidized Pd loaded WO₃ nanowires for Hydrogen detection

M.A.H.M.Munasinghe^{1,2,*}D. Zappa², N.Gunawardhana², E. Comini¹

¹SENSOR Laboratory, University of Brescia, Via D. Valotti 9, Brescia, Italy. ²Centre for Research and International Relations, Sri Lanka Technological Campus, Padukka, Sri Lanka.

Abstract

Recently, environmental monitoring has become even more pressing need due to the air pollution caused by increasing number of automobiles and industry. In this regard, metal oxide semiconductor-based gas sensors have attracted a great deal of attention due to their high sensitivity, high stability, low cost and easy fabrication. High surface to volume ratio can significantly increase the absorption of the gas molecules and thus growth of 1-D nanostructures is important in enhancing the gas sensing performance. Therefore, WO₃ nanowires were synthesized on alumina substrate (2 mm \times 2 mm) by thermal oxidation, which is simple, low cost and catalyst free technique that can be used to grow 1-D nanostructures. RF magnetron sputtering was used to deposit W layers (25 nm), and thermal oxidation was carried out at 600 °C in an oxygen deficient environment. Further, Pd loading was performed by RF magnetron sputtering at room temperature. XRD revealed that asprepared WO₃ nanowires were crystalline with a monoclinic phase of WO₃. The structural evaluation showed that oxygen flow plays a crucial role in the growth of WO₃ nanowires. Furthermore, the oxidation temperature and oxidation time have a significant effect on the growth of WO₃. Gas sensing measurements showed that $Pd-WO_3$ nanowires have the ability to detect H_2 at a low temperature range of 150 -250 °C. Optimum working temperatures for H₂ and H₂S detection were identified as 250 °C and 350 °C, respectively, and a selective detection can be achieved by changing the temperature. These results suggest that Pd-WO₃ sensors are good candidate for detection of H₂ at low temperature range.

Keywords: WO₃ nanowires, Gas sensing, H₂ Sensing, Air pollution, H₂S Sensing.